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Molybdenum effect on volume in Fe-Cr-Ni 
alloys 
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By X-ray diffraction on powder specimens, we determined the unit-cell size for six face- 
centred-cubic Fe-Cr-Ni alloys, nominally Fe-19Cr-12Ni (at%). In these alloys, the molyb- 
denum content ranged up to 2.4 at%. We found that molybdenum increases volume: 0.45% 
per at%. Usual models based on atomic volumes and elastic compressibilities fail to explain 
the large volume increase. We ascribe the discrepancy to changes in interatomic bonding, 
which we describe in terms of 3d-electron models. 

1. I n t r o d u c t i o n  
Foremost among a solid's most important physical 
properties is the atomic volume, which relates directly 
and inextricably to fundamental interatomic forces. 
The usual models of cohesion deal principally with 
three physical quantities: cohesive energy, bulk modu- 
lus, and atomic volume. Consider, for example, a 
Mie-Griineisen interatomic potential 

U ( r )  = A r - "  - & m ( 1 )  

where r denotes interatomic spacing; A and n are 
coefficients of the repulsive energy and B and m are 
coefficients of the attractive energy. In this model, 
one obtains for the bulk modulus (reciprocal com- 
pressibility) [1] 

Be = Vo(~2U/OV2)v=vo = mnUo/9Vo (2) 

where U denotes internal energy, V volume, U0 
cohesive energy and V0 equilibrium atomic volume. 
(Do not confuse B and B0.) 

More than fifty years ago, the strong effect of 
atomic size on solid-state alloy properties, especially 
solid solubility, was established by Hume-Rothery 
et al. [2-3]. Even earlier, Wasastjerna [4] and Gold- 
schmidt [5] had realized the importance of establishing 
the elements' atomic radii. Pauling [6] found the 
concept of atomic radius essential for understanding 
molecular and crystal structures, which play vital roles 
in determining properties. Pauling [7] argued that a 
resonating-covalent-bond concept combined with 
atomic radii gives qualitative explanations of many 
properties: magnetic, heat capacity, hardness, com- 
pressibility, and thermal expansion. Waser and Pauling 
[8] related compressibilities and force constants to 
interatomic distance; they ascribed behavioural devi- 
ations to a change in bond type (electronic structure). 
Friedel [9] explained the non-linear volume depen- 
dence of alloys as arising from the constituents' com- 
pressibility differences. Rudman [10] reviewed the 
atomic volumes of the metallic elements. He reported 
a range of atomic volumes from 8.1 x 10 3 nm 3 for 
beryllium to 116.0 • 10 -3 nm 3 for caesium. The 3d 

transition metals from chromium to nickel show a 
narrow range between 10.9 • 10 -3 and 12.2 • 
10 -3 nm 3. 

The atomic-volume/elastic-constant interrelation- 
ship is well established (see the Waser and Pauling 
study mentioned above). At least since Fuchs [I 1], we 
have known that the bulk modulus that arises from 
the free-electron gas varies as r-  s, where V 0 = ~r0.4 3 
Gilman [12] showed that B varies as r-",  where n 
equals 4 for alkali metals, 4 for covalent tetrahedrally 
bonded crystals, 8 for f cc  carbides, 4 for fluorite- 
type crystals, 4 for ionic crystals and 3 for solid rare 
gases. No simple B - r  relationship arises for the tran- 
sition metals. The explanation of why B decreases with 
increasing r clearly lies at some level more fundamen- 
tal than the interatomic potential, which imposes no 
constraint on [~2 U(V) / (  V=)]v=vo and V 0. If  the inter- 
atomic-potential minimum shifts to another equilib- 
rium volume, why should its curvature change? 

In discussing cohesive forces in metals and alloys, 
Mott [13] cited experimental and theoretical reasons 
why the energy of an atom depends on the volume 
available to it rather than on the coordination number 
or its surroundings. Mott empahsized that atomic 
volume is more important than interatomic distance, 
which depends on coordination number. 

The present study considers the volume change 
caused by alloying molybdenum, a body-centred- 
cubic element, into a face-centred-cubic Fe-Cr-Ni 
alloy. Iron, chromium, and nickel are 3d transition 
elements. Molybdenum is a 4d transition element with 
much larger atomic volume: V(Mo)/V(Fe) = 15.50 x 
10-3nm3/11.78 • 10 3nm3 = 1.32. 

2. Measurements  
2.1. Materials 
We obtained alloys from the research laboratory of a 
major molybdenum manufacturer. Table I shows their 
chemical compositions. Alloys were prepared in a 
vacuum induction furnace, cast into round ingots 
13.3cm in diameter and 21.8cm long, cropped and 
forged at 1100~ to billets 7.6cm in cross-section, 
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T A B L E I Chemical compositions (wt %) 

Alloy Mo Cr Ni Mn C N S Si P 

1 2.05 18.5 13.8 1.05 0.021 0.180 0.004 0.30 0.002 
2 2.06 18.0 12.0 1.00 0.024 0.188 0.004 0.30 0.003 
3 2.98 18.2 14.0 1.02 0.022 0.188 0.005 0.30 0.002 
4 3.00 18.0 11.8 1.01 0.023 0.200 0.005 0.29 0.002 
5 4.02 17.9 14.2 1.00 0.022 0.196 0.004 0.30 0.002 
6 4.08 18.2 12.1 1.03 0.020 0.204 0.005 0.28 0.002 

rolled at 1100 ~ C to 2.5 cm plate, annealed for 30 min at 
1000 ~ C, and water quenched. To prepare materials 
for X-ray diffraction, we filed the plates, sieved the 
powders to 0.053 to 0.150mm, and annealed the 
powders in evacuated quartz ampules at 1050~ for 
35 min. 

2.2. X-ray diffraction 
We prepared specimens by pressing the powders into 
viscous silicone grease in a fiat sample holder. Speci- 
mens were placed in a commercial horizontally polar- 
ized Bragg-Brentano X-ray diffractometer. A 0.3 mm 
(0.18 ~ receiving slit at the goniometer radius of  
22.5cm was step scanned in 0.02 ~ 20 increments at 
60 sec per step. The radiation consisted of  Cu K[I(I, 3), 
wavelength 1.392 25 x 10 -3  nm, excited at 44 kV and 
40mA. Using a germanium solid-state detector, we 
measured each specimen twice. During measurements, 
temperature varied between 307 and 310 K. 

We determined peak positions by fitting to a 
Lorentzian 

I = /max 1 + 2W 2 

where, /max denotes maximum intensity, 0 diffraction 
angle, and W full peak width at half-maximum inten- 
sity. We obtained nine fc c diffraction lines: 11 l, 200,  
220,  31 1 ,222 ,  400,  3 3 1 , 4 2 0 ,  422.  To determine 
the unit-cell size, we used the 422  diffraction line 
calibrated against silicon (NBS Standard Reference 
Material SRM-740A). For Cu Kfl radiation, the 422  
line appears at 143 ~ in 20. 

3. Resul ts  
Fig. 1 shows the principal results: measured unit-cell 
size, a, together with a linear-least-squares best-fit line 
(in nm): 

a = aj + bc = 0.35926 + 0.05385c (3) 
where aj denotes the zero-molybdenum intercept, b 

0.362 I t f 

the slope da/dc, and c the atomic fraction of molyb- 
denum. For  our purposes, we shall rewrite Equation 3 
as 

a - a~ Aa b 
- - - 0.1499 (4) 

cal ca t al 

We shall try to estimate this quantity using simple 
models. For  cell-size measurements, we estimate the 
systematic uncertainty as 6 x 10 -5 nm and the ran- 
dom uncertainty as 1 x 10 -5 nm. For the slope da/ 
dc, we estimate the uncertainty as 0.005 nm. From this 
result, it follows that the volume change equals 

V - V I  
- 0.4504 (5) 

cV, 

Thus, the volume increases approximately 0.5% per 
atomic per cent molybdenum. If  volume followed a 
linear rule-of-mixture, this result implies that the 
effective atomic volume of molybdenum exceeds the 
average Fe-Cr-Ni-a l loy  atomic volume by 45%. 

In Table I, one sees two sets of alloys differing in 
nickel content by approximately 2%. The measure- 
ment results in Fig. 1 show a difference between the 
low- and high-nickel alloys. Compared with molyb- 
denum, the nickel effect on volume is negligible; and 
we ignore it. Thus, the line in Fig. 1 represents the 
average nickel content: 13.0 wt %. 

4. Discussion 
First, we note that the measurements shown in Fig. 1 
suggest that the nickel content affects the slope da/dc; 
lower nickel content gives a lower slope. This effect is 
hardly unexpected. Nickel, with ten electrons outside 
the argon shell, represents the transition metal that 
differs most from molybdenum (with six outside elec- 
trons). Along with copper, nickel represents a proto- 
type f c c  metal. Thus, we expect its reluctance to 
accept molybdenum as a companion alloying element. 

Second, we shall consider whether existing simple 
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Figure 1 Compositional variation of  unit-cell dimen- 
sion, a. Curve through measurement points represents 
a linear-least-squares fit to six values. Open circles 
represent lower nickel alloys; open squares represent 
higher nickel alloys. Lower curves represent six model 
predictions: (1) sphere-in-hole; (2) Vegard; (3) 
Gschneidner and Vineyard; (4) Friedel; (5) Zener; (6) 
volume. 
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T A B L E  II Model predictions of (l/a) (da/dc) 

Model Prediction 

Sphere-in-hole 0.069 
Vegard 0.073 
Gschneidner and Vineyard 0.086 
Friedel 0.087 
Zener 0.099 
Volume 0.104 
Observed 0.150 

models explain the volume change shown in Fig. 1. 
We consider six models, use them to calculate 
( d -  dl)/Cd~, (where d is the nearest-neighbour 
spacing) and show the results in Table II. Subscript 1 
denotes the molybdenum-free Fe-Cr-Ni  alloy, the 
reference state. Other measures of interatomic spacing 
include the unit-cell size, a, where 

d = (~/2/2) a (6) 

and the effective atomic volume 

V = (47r/3)r 3 = a3/4 (7) 

Among these, we find the relationships 

Ad Aa Ar 
d a r (8) 

Some of the models calculate A V~ V rather than kd/d. 
To compare these, we used the relationship 

AV d3 - d 3 ( d - d~ ) 
-P7 = d: = 3 7, 

+ 3 ( d -  dl 

4.1.  Ve ga r d ' s  mode l  
In 1921, Vegard [14] proposed that the unit-cell size 
follows a linear rule-of-mixture 

d = (1 - c)d l + cd2 (10) 

where the subscript 1 denotes the solvent, subscript 2 
the solute, and c the atomic fraction. Thus, 

Ad d2 - d l  
- ( 1 1 )  

cd~ d~ 

4.2. Volume model 
A simple alternative to Equation 10, which was 
adopted by Zen [15], substitutes atomic volume for 
interatomic distance 

V = (1 - -  c ) V  1 -~- c V  2 (12)  

In discussing cohesion in metals and alloys, Mott  [13] 
argued that atomic volume rather than interatomic 
distance tends to remain constant. Thus, 

a d  IAV V2 - 1/1 
- -  ~ - - -  = ( 1 3 )  
cdl 3 cVl 3cV, 

4.3. Sphere-in-hole model 
The above two models focus on atomic size and 
neglect atomic compressibility, or the elastic-stiffness 
constants. An isotropic material possesses two indepen- 
dent elastic constants, often chosen as bulk modulus 
(reciprocal compressibility) B and shear modulus G. 
Related to these is the Poisson ratio 

1 3 B  - 2G 
v = ( 1 4 )  

2 3 B + G  

The sphere-in-hole model originated with Bitter [16] 
and received much elaboration by Eshelby [17]. This 
model simulates a point defect as either a rigid or an 
elastic sphere forced into a spherical cavity whose 
volume is smaller by kW.  The elastic state possesses 
spherical symmetry with respect to the inclusions's 
centre. For  the key equations, we take those given by 
Teodosiu [18]: 

A V  = 1 + (4G,/3BI) AV'  (15) 
1 + (4Gl/3B2) 

Here, A V' represents the solvent-atom-solute-atom 
volume difference: 

AV' = (4n/3) (r 3 - r~) (16) 

4.4. Friedel model 
Based on a modified Eshelby model, Friedel [9] gives 
the basic relationship 

d -  d, d 2 -  d, x + 1 
- + ( 1 7 )  

cdl dl x + Bi/B2 

If v denotes the Poisson ratio defined in Equation 14 
then 

x = (1 + v)/[2(1 - 2v)] (18) 

4.5. Zener's model 
Both the sphere-in-hole model and the Friedel model 
depend on atomic volumes and on elastic constants, 
the second-order elastic constants B and G. The large 
strains suggest that third-order elastic constants may 
enter the problem. In 1942, Zener [19] developed a 
model that contains one third-order elastic constant: 
dG/dP, the shear-modulus pressure derivative. Zener 
used an atomic-volume rule-of-mixture, Equation 12, 
and found two volume-change components: 

AV = AV ~ + AV (2) (19) 

The two components are given by 

AV ~ = 12~r2Ar(1 - vl)/(l + v~) (20) 

and 

AV(2 , _ 2kr (dG1 G,'~ AVO~ (21) 
r I \ d P  Bl / 

4.6.  G s e h n e i d n e r - V i n e y a r d  m o d e l  
Another model containing a third-order elastic con- 
stant arose in a study by Gschneidner and Vineyard 
[20]. They found that 

AV = c(1 - c) 8rr?(Ar) 2 (22) 

where 

= (1 - c)r~ + cr2 (23) 

Note that this relationship contains a c 3 term. For  
dilute concentrations, c < 1, Gschneidner and Vine- 
yard found 

d - - d ]  d2 - d 1 ( riG1 G' ) ( kd'~ 2 (24)  

cd, = d-----~ + 2 \ dP B~ \ d, 7 

Table II shows results from the above six models. As 
input for the calculations, we used rl = 0.253 89 nm, 
r 2 = 0.27252nm, B1 = 158GPa, B2 = 260GPa, v, = 
0.275, G, = 83.5 GPa, G2 = 260GPa, and dG/dP = 

31 22 



1.75. The second-order elastic constants for the molyb- 
denum-free state were reported by Ledbetter and Kim 
[21] and d G / d P  by Gerlich and Hart [22]. We took the 
remaining input from standard sources. 

The results in Table II, ranging from 0.073 to 0.099, 
fall far below the observed value: 0.15. For molyb- 
denum, if we adopt the Pauling radius for coordi- 
nation number twelve [23], 0.2792nm replacing 
0.27252nm, the model calculations improve, how- 
ever they remain well below observation. 

The measurement-model discrepancy suggests that 
alloying molybdenum into Fe-Cr-Ni involves elec- 
tron-structure changes. This observation contains no 
suprise for several reasons. First, we are placing an 
element that prefers the b cc structure into an fcc  
structure. From a chemical-bond viewpoint, an elec- 
tron cloud with lobes in { 1 1 1 } directions must adjust 
to electron clouds with lobes in { 1 1 0} directions [24]. 
Second, molybdenum represents not an ordinary 
b c c metal, but a paradigm. Among the 4d elements, 
molybdenum shows the highest melting point. Outside 
the metallic orbital, Pauling [23] assigns molybdenum 
a valence of 5.0, exactly the number of bonding elec- 
trons for maximum cohesion. The potency of molyb- 
denum as a b cc stabilizer emerged in Pfeil's [25] 
studies on zirconium alloys. Altmann et  al. [26] point 
out that the b c c stabilizing effect "should be more 
marked for molybdenum and tungsten, where we have 
a peak of the d weight". Altmann et  al. also point out 
that, despite favourable size factors, molybdenum 
shows practically no solid solubility in silver, and 
chromium and none in copper. Thus, when alloyed 
into an fc c Fe-Cr-Ni alloy, we expect molybdenum 
to cause strong physical-property changes. 

In trying to understand the physical properties of 
these alloys, we confront one of solid state physics's 
most difficult problems: quantum-mechanical theory 
of d electrons. Despite enormous effort - for example 
Mott [27], Pauling [28], Zener [29], Bader et  al. [24], 
Goodenough [30], Friedel et  al. [31] - the problem 
remains unsolved. Herring [32] gave an elementary 
critique of the state of d electrons in transition metals. 
He concluded that elements in the 3d row should 
resemble the free atoms and that most of these metals 
possess itinerant electrons. This reference contains 
Herring's much-cited remark on the electronic theories: 
"It is like mixing a few liquors in various proportions 
to get a variety of different cocktails". Mainly from 
the view of d-band theory, Brooks [33] reviewed the 
subject. In his review, Brooks disputes ideas based on 
crystal-field theory and separation of d levels into Eg 
and Tag subbands. (However, a recent successful tight- 
binding calculation of iron's elastic constants invokes 
the Eg orbitals [34].) 

In general, we expect that whatever increases volume 
will decrease cohesion and elastic stiffness. The present 
alloy system violates this precept. Ledbetter and Kim 
[21] showed that alloying molybdenum into Fe-Cr-Ni 
increases the bulk modulus. Thus, to understand these 
alloys, we must identify an electronic effect that 
simultaneously increases volume and increases bulk 
modulus, the V 0 and B0 in Equation 2. 

A theory by Ducastelle [35] leads to simple relation- 

ships for the volume and the bulk modulus. He 
assumed that the total energy arises from two sources: 
d-band energy calculated by a tight-binding approxi- 
mation and Born-Mayer repulsive energy. Although 
this model is too simplified to explain present results, 
it displays the principal features necessary for an 
improved calculation. For the Wigner-Seitz radius, r0, 
Ducastelle obtained 

1 p c  
r 0 = - -  In - -  (25) 

p --  q q A W o  

The bandwidth approximation is 

W = Woe -qr (26) 

The repulsive energy is 

Er = Ce -p" (27) 

and 

A = Z(10 - z)/20 (28) 

where, p and q are constants and z denotes the average 
number of electrons per atom in the d band. For the 
bulk modulus, Ducastelle obtained 

8o = ro = g L=,o 

= p q ~ E c / 9  (29) 

Thus, Ducastelle's model predicts that increased 
atomic volume (V0 = 4Tcr03/3) leads to decreased bulk 
modulus because Ec represents cohesive energy per 
unit volume. 

Aside from the complications of 3d electrons, 
another factor arises in these alloys: magnetization. 
Even though the alloys show macroscopic paramag- 
netism, disordered local atomic moments may affect 
the physical properties. The usual view is that 
magnetization increases volume and decreases bulk 
modulus [36, 37]. However, several recent studies 
[38-41] show that the bulk modulus may increase with 
magnetization and increasing volume. Based on their 
model, Friedel and Sayers [40] expect such bulk 
modulus increases to occur in elements with a high 
electron-density-of-states, transition elements to the 
right: iron, cobalt, and nickel. 

Another viewpoint is that molybdenum added to 
iron and nickel tends to form compounds. In these 
dilute alloys, we expect the same tendency. Thus, 
molybdenum increases cohesion and bulk modulus, but 
with ligands that impose a looser volume arrangement. 

Faced with these different views, it seems reason- 
able to adopt an interim viewpoint. Molybdenum 
alloyed into fc c Fe-Cr-Ni alloys causes unspecified 
electronic changes that increase volume, increase 
resistance to dilatation, but decrease resistance to 
shear. 

5. S u m m a r y  
By X-ray diffraction, we measured the volume change 
accompanying molybdenum alloying into an Fe-Cr-Ni 
alloy. In volume, molybdenum atoms are approxi- 
mately 30% larger than iron atoms. We found that 
molybdenum increases volume by 45%. Existing 
models based on atomic volume and elastic compress- 
ibility fail to explain the large volume increase. We 
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ascribe this large increase to electronic effects associ- 
ated with substituting molybdenum, which prefers a 
b c c  crystal structure, into an f.c.c, crystal structure. 
Another study showed that the alloy's bulk modulus 
increases with increasing volume. This unexpected 
result - increased volume, increased bulk modulus - 
is consistent with some recent theoretical studies. 
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